Showing posts with label inositol. Show all posts
Showing posts with label inositol. Show all posts

Saturday, April 16, 2011

PI(3)P and Exocytosis

ResearchBlogging.org

The classic opinion regarding PI(3)P’s role in intracellular trafficking is that it is synthesized and functions primarily on early endosomes. Several recent publications have highlighted a potential second role for this lipid in exocytosis. Extending previous work by this group and others on the positive role of PI3K-C2a in neurosecretory pathways (1,2) and GLUT4 exoctyosis (3,4) this paper from Tania Maffucci's group interrogates the role of this lipid kinase in insulin secretion in INS1 cells. Combined these results suggest a general role for PI3K-C2a and its product, PI(3)P in exocytotic events.

This group has been investigating the role of the class II PI3K isoforms in exocytosis in a variety of systems. In this paper they investigate the role of PI3K-C2a in insulin secretion using INS1 rat insulinoma cells as a model. Stable knockdown cells did not show any defects in proliferation, calcium signaling, intracellular insulin levels or the expression levels and sub-cellular localization of exocytotic proteins. The PI3K-C2a knockdown cells did however show significant defects in insulin secretion, stimulated by either a secretagogue cocktail or potassium chloride.

Mechanistically, the authors show that there is no defect in insulin granules proximal to the plasma membrane at the resting state. They do detect a decrease in the amount of SNAP25 hydrolysis induced by the secretagogue cocktail. SNAP25 hydrolysis has been proposed to be an important step in the fusion of exocytic vesicles (5). This proteolytic event has not been established as a major mechanism in exocytosis, and it may only correlate with defects in PI3K-C2a signaling. However if reduced SNAP25 proteolysis is the mechanistic defect resulting from PI3K-C2a knockdown, then this suggests a role in protease regulation by PI(3)P or another PI(3)P-derived molecule as a key part of the general exocytotic machinery. It is also possible that there is another, as of yet unstudied role of PI3K-C2a and PI(3)P in exocytosis.



Dominguez, V., Raimondi, C., Somanath, S., Bugliani, M., Loder, M., Edling, C., Divecha, N., da Silva-Xavier, G., Marselli, L., Persaud, S., Turner, M., Rutter, G., Marchetti, P., Falasca, M., & Maffucci, T. (2010). Class II Phosphoinositide 3-Kinase Regulates Exocytosis of Insulin Granules in Pancreatic Cells Journal of Biological Chemistry, 286 (6), 4216-4225 DOI: 10.1074/jbc.M110.200295

References


(1) Meunier, Frederic, Shona Osborne, Gerald Hammond, Frank Cooke, Peter Parker, Jan Domin, and Giampietro Schiavo. “Phosphatidylinositol 3-Kinase C2{alpha} Is Essential for ATP-dependent Priming of Neurosecretory Granule Exocytosis.” Molecular Biology of the Cell 16, no. 10 (2005): 4841-4851. PubMed, DOI.

(2) Wen, Peter J, Shona L Osborne, Isabel C Morrow, Robert G Parton, Jan Domin, and Frederic A Meunier. “Ca2+-regulated pool of phosphatidylinositol-3-phosphate produced by phosphatidylinositol 3-kinase C2alpha on neurosecretory vesicles.” Molecular biology of the cell 19, no. 12 (December 2008): 5593-603. PMC, PubMed, DOI.

(3) Maffucci, Tania, Anna Brancaccio, Enza Piccolo, Robert C Stein, and Marco Falasca. “Insulin induces phosphatidylinositol-3-phosphate formation through TC10 activation.” The EMBO journal 22, no. 16 (August 15, 2003): 4178-89. PubMed, DOI.

(4) Falasca, Marco, William E Hughes, Veronica Dominguez, Gianluca Sala, Florentia Fostira, Michelle Q Fang, Rosanna Cazzolli, Peter R Shepherd, David E James, and Tania Maffucci. “The role of phosphoinositide 3-kinase C2alpha in insulin signaling.” The Journal of biological chemistry 282, no. 38 (September 21, 2007): 28226-36. PubMed, DOI.

Wednesday, January 12, 2011

Inositol Phosphates and Insulin Signaling

When most people think of the role of inositols in Akt signaling, they immediately think about the role of PIP3 in the PDK1-Akt signaling axis.  A recent paper published in Cell by Solomon Snyder's group at John's Hopkins highlights the role of soluble inositol phosphates in insulin signaling.

Soluble Inositol Phosphates

Inositol is best known as a lipid head group, that can be phosphorylated to form 8 potential phosphorylated phosphatidylinositols. These membrane bound signaling lipids have many important roles in cell biology, including in signal transduction. In addition to these 8 membrane bound lipids, the inositol headgroup can be solubilized from the lipid tails by phospholipases.  This leads to the important second messenger IP3, which can then be further phosphorylated to yield IP4, IP5 and IP6.  Adding even more to the complexity, these rings can be pyrophosphorylated to yield even more species including IP7 and IP8 among others. The functions of these phosphorylated inositol rings are largely unknown.

Role of IP7 in Akt Activation

The IP6-Kinase 1 phosphorylates IP6 to form IP7 (pyrophospho-IP5). The current paper, Chakraborty et al. (2010), describes insulin signaling in cells in which IP6 is knocked out. As expected, IP7 concentrations are reduced in these cells, but the major finding is that Akt phosphorylation and activation is increased. The proposed mechanism for this effect is that IP7 acts as an endogenous, physiological inhibitor of Akt, likely by competitively inhibiting the ability of PIP3 to bind to the same site in its PH domain. Once IP7 is reduced, this inhibition is released, and Akt can be activated more easily.

Consistent with hyperactivation of Akt, these knockout mice exhibit increased insulin sensitivity and a reduction in diet-induced obesity. Akt and its downstream targets are known to be major mediators of insulin signaling, and so increased insulin signaling through the Akt pathway leads to increased glucose disposal and a resistance to diet-induced weight gain, insulin resistance, hyperinsulinemia and hyperglycemia. These data are consistent with a role of IP7 as a negative regulator of insulin signaling and the authors propose that IP6K1 may be a novel potential therapeutic target to improve insulin sensitivity.

ResearchBlogging.org

Chakraborty, A., Koldobskiy, M., Bello, N., Maxwell, M., Potter, J., Juluri, K., Maag, D., Kim, S., Huang, A., & Dailey, M. (2010). Inositol Pyrophosphates Inhibit Akt Signaling, Thereby Regulating Insulin Sensitivity and Weight Gain Cell, 143 (6), 897-910 DOI: 10.1016/j.cell.2010.11.032